Part Number Hot Search : 
74HC1650 ES1000FL MM3052D C74VC ZMM5237 VN460SP Z5225 ACS8527
Product Description
Full Text Search
 

To Download AMMP-6220 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  attention: observe precautions for handling electrostatic sensitive devices. esd machine model (class 1a) esd human body model (class 0) refer to avago application note a004r: electrostatic discharge damage and control. features ? 5x5 mm surface mount package ? broad band performance 6-20 ghz ? low 2.5 db typical noise fgure ? high 22 db typical gain ? 50 w input and output match ? single 3 v (55 ma) supply bias applications ? microwave radio systems ? satellite vsat, dbs up/down link ? lmds & pt-pt mmw long haul ? broadband wireless access (including 802.16 and 802.20 wimax) ? wll and mmds loops ? commercial grade military description avagos AMMP-6220 is a high gain, low-noise ampli - fer that operates from 6 ghz to 20 ghz. the lna is designed to be a easy-to-use component for any surface mount pcb application. the broad and uncondition - ally stable performance makes this lna ideal for pri - mary, sub-sequential or driver low noise gain stages. intended applications include microwave radios, 802.16, automotive radar, vsat, and satellite receivers. since one part can cover several bands, the AMMP-6220 can reduce part inventory and increase volume purchase options. the lna has integrated 50 w i/o match, dc block - ing, self-bias and choke to eliminate complex tuning and assembly processes typically required by hybrid (discrete- fet) amplifers. the package is full smt compatible with backside grounding and i/o to simplify assembly. functional diagram 8 4 1 2 3 7 6 5 100 pf 100 pf p ackage base gnd pin 1 2 3 4 5 6 7 8 v d rf out rf in function AMMP-6220 6-20 ghz low noise amplifer data sheet
2 AMMP-6220 absolute maximum ratings [1] symbol parameters/conditions units min. max. v d positive drain voltage v 7 i d drain current ma 100 p in cw input power dbm 15 t ch operating channel temp. c +150 t stg storage case temp. c -65 +150 t max maximum assembly temp. c +300 (60 sec max.) note: 1. operation in excess of any one of these conditions may result in permanent damage to this device. AMMP-6220 dc specifcations/physical properties [1] symbol parameters and test conditions units min. typ. max. i d drain supply current (under any ma 55 70 rf power drive and temperature) (v d = 3.0 v) q ch-b thermal resistance [2] (backside temperature, t b = 25c) c/w 27 notes: 1. ambient operational temperature t a = 25c unless otherwise noted. 2. channel-to-backside thermal resistance (t channel (t c ) = 34c) as measured using infrared mi - croscopy. thermal resistance at backside temperature (t b ) = 25c calculated from measured data. AMMP-6220 rf specifcations [3, 4, 6] t a = 25c, v d = 3.0 v, i d(q) = 55 ma, z o = 50 w symbol parameters and test conditions units typical sigma gain small-signal gain [5] db 22 0.5 nf noise figure into 50 w [5] db 2.5 0.2 p -1db output power at 1db gain compression dbm +10 0.8 oip3 third order intercept point; dbm +20 1.1 ?f = 100 mhz; pin = -20 dbm rlin input return loss db -12 0.3 rlout output return loss db -16 0.7 isol reverse isolation db -45 0.5 notes: 3. small/large -signal data measured in a fully de-embedded test fxture form t a = 25c. 4. pre-assembly into package performance verifed 100% on-wafer per ammc-6220 published specifcations. 5. this fnal package part performance is verifed by a functional test correlated to actual performance at one or more frequencies. 6. specifcations are derived from measurements in a 50 w test environment. aspects of the amplifer performance may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise ( g opt) matching.
3 figure 1. gain. AMMP-6220 typical performances (t a = 25c, v d =3 v, i d = 55 ma, z in = z out = 50 w unless otherwise stated) note: these measurements are in 50 w test environment. aspects of the amplifer performance may be improved over a narrower bandwidth by application of additional conjugate, linearity or low noise ( g opt) matching. figure 2. isolation. figure 3. input return loss. figure 4. output return loss. figure 5. noise fgure. figure 6. typical power, op-1db and oip3. figure 7. gain over temperature. figure 8. isolation over temperature. figure 9. input return loss over temperature. 25 20 10 0 4 6 8 1 2 2 0 2 2 frequency (ghz) s21 (db) 10 14 5 15 16 18 0 -10 -20 -40 -60 4 6 8 1 2 2 0 2 2 frequency (ghz) s21 (db) 10 14 -50 -30 16 18 0 -5 -20 4 6 8 1 2 2 0 2 2 frequency (ghz) s11 (db) 10 14 -15 -10 16 18 0 -5 -10 -20 -30 4 6 8 1 2 2 0 2 2 frequency (ghz) s22 (db) 10 14 -25 -15 16 18 4.0 3.0 1.0 0 6 8 12 18 20 frequency (ghz) nf (db) 3.5 10 14 1.5 0.5 2.5 2.0 16 25 5 0 6 8 12 18 20 frequency (ghz) op-1db & oip3 (dbm) 20 10 14 10 15 16 p-1db oip3 30 25 20 10 0 4 6 8 1 2 2 0 2 2 frequency (ghz) s21 (db) 10 14 5 15 16 18 +25 c -40 c +85 c 0 -10 -20 -40 -60 4 6 8 1 2 2 0 2 2 frequency (ghz) s12 (db) 10 14 -50 -30 16 18 +25 c -40 c +85 c 0 -5 -15 -20 4 6 8 1 2 2 0 2 2 frequency (ghz) s11 (db) 10 14 -10 16 18 +25 c -40 c +85 c
4 AMMP-6220 typical performances (t a = 25c, v d = 3 v, i d = 55 ma, z in = z out = 50 w unless otherwise stated) note: these measurements are in 50 w test environment. aspects of the amplifer performance may be improved over a narrower bandwidth by application of additional conjugate, linearity or low noise ( g opt) matching. figure 10. output return loss over temperature. figure 11. nf over temperature. figure 12. bias current over temperature. figure 13. gain over vdd. figure 14. isolation over vdd. figure 15. input rl over vdd. figure 16. output return loss over temperature. figure 17. noise fgure over vdd. figure 18. oip3 over vdd. 0 -5 -10 -20 -30 4 6 8 1 2 2 0 2 2 frequency (ghz) s22 (db) 10 14 -25 -15 16 18 +25 c -40 c +85 c 4.0 3.0 1.0 0 6 8 12 18 20 frequency (ghz) nf (db) 3.5 10 14 1.5 0.5 2.5 2.0 16 +25 c -40 c +85 c 25 20 15 0 4 6 8 1 2 2 0 2 2 frequency (ghz) s21 (db) 10 14 5 10 16 18 3 v 4 v 5 v 0 -10 -20 -60 4 6 8 1 2 2 0 2 2 frequency (ghz) s12 (db) 10 14 -50 -40 -30 16 18 3 v 4 v 5 v 0 -5 -20 4 6 8 1 2 2 0 2 2 frequency (ghz) s11 (db) 10 14 -15 -10 16 18 3 v 4 v 5 v 0 -5 -10 -30 4 6 8 1 2 2 0 2 2 frequency (ghz) s22 (db) 10 14 -25 -20 -15 16 18 3 v 4 v 5 v 3.0 2.5 2.0 0 6 8 12 20 frequency (ghz) nf (db) 10 14 0.5 1.0 1.5 16 18 3 v 4 v 5 v 25 5 0 6 8 12 18 20 frequency (ghz) oip3 (dbm) 20 10 14 10 15 16 3 v 4 v 5 v 62 52 50 3.0 5.0 vdd (v) idd (ma) 60 3.5 4.0 56 54 58 4.5 +25 c -40 c +85 c
5 AMMP-6220 typical scattering parameters [1] (t a = 25c, v d = 3 v, zo = 50 w ) s11 s21 s12 s22 freq ghz db mag phase db mag phase db mag phase db mag phase 2.0 -1.46 0.845 65.6 -28.9 0.036 -62.0 -60 0.001 70.9 -4.8 0.570 85.5 2.5 -1.03 0.888 -4.4 -10.6 0.292 -147.1 -51 0.003 12.1 -9.6 0.330 38.7 3.0 -0.40 0.955 -83.9 6.1 2.027 96.8 -46 0.005 -72. -8.8 0.361 18.1 3.5 -4.65 0.585 -150.2 10.6 3.420 -71.3 -56 0.001 136.7 -6.3 0.483 -46.1 4.0 -1.67 0.825 153.6 6.2 2.051 -104.2 -61 0.001 143.5 -6.1 0.491 -118.9 4.5 -1.39 0.851 72.8 16.6 6.764 -178.3 -49 0.003 -86.3 -9.3 0.342 174.4 5.0 -2.80 0.724 18.7 19.6 9.563 93.3 -45 0.005 140.2 -10.8 0.286 125.8 5.5 -1.59 0.832 -65.0 22.8 13.836 9.3 -44 0.006 26.4 -15.5 0.166 79.4 6.0 -4.66 0.585 -144.6 23.5 15.077 -72.4 -50 0.003 -66.8 -16.9 0.141 64.2 6.5 -8.62 0.370 148.4 23.6 15.218 -145.1 -55 0.002 -116.2 -16.7 0.146 31.4 7.0 -11.96 0.252 93.4 23.6 15.198 150.4 -58 0.001 153.4 -17.5 0.132 -8.7 7.5 -14.57 0.187 48.4 23.3 14.717 90.5 -54 0.002 89.9 -19.5 0.106 -51.8 8.0 -15.90 0.160 12.5 23.2 14.575 33.6 -52 0.002 33.2 -22.7 0.073 -103.7 8.5 -16.48 0.150 -21.7 23.1 14.429 -20.9 -51 0.003 -16.5 -24.6 0.059 -172.2 9.0 -16.49 0.150 -58.8 23.1 14.408 -74.7 -47 0.004 -46.2 -23.7 0.065 119.7 9.5 -16.53 0.149 -100.8 23.2 14.455 -126.9 -47 0.004 -85.8 -21.9 0.080 70.3 10.0 -16.56 0.149 -147.1 23.2 14.462 -178.2 -46 0.005 -121.8 -21.0 0.089 31.0 10.5 -16.19 0.155 161.1 23.3 14.624 131.2 -45 0.006 -155.9 -21.3 0.086 -3.6 11.0 -15.63 0.165 108.2 23.4 14.926 80.4 -43 0.007 159.4 -22.6 0.074 -29.9 11.5 -14.36 0.191 54.8 23.6 15.226 29.4 -44 0.006 130.7 -23.8 0.064 -46.2 12.0 -13.22 0.218 3.0 23.8 15.497 -20.8 -42 0.008 88.0 -23.4 0.067 -59.0 12.5 -12.30 0.242 -50.7 23.7 15.483 -72.0 -41 0.008 49.2 -21.3 0.086 -90.7 13.0 -11.45 0.268 -102.0 23.7 15.450 -122.8 -41 0.008 14.5 -19.7 0.102 -130.4 13.5 -10.83 0.287 -154.6 23.6 15.143 -173.1 -40 0.010 -26.9 -17.8 0.127 179.7 14.0 -10.47 0.299 153.2 23.2 14.518 135.7 -40 0.009 -66.8 -16.0 0.157 128.3 14.5 -10.32 0.305 101.7 22.7 13.724 87.2 -39 0.010 -104.7 -14.4 0.189 79.9 15.0 -10.53 0.297 52.2 22.3 13.168 38.7 -40 0.009 -146.3 -13.5 0.211 34.8 15.5 -10.62 0.294 8.9 22.1 12.858 -8.5 -40 0.009 174.6 -13.2 0.218 -4.6 16.0 -10.79 0.289 -33.2 21.9 12.536 -56.2 -42 0.008 138.1 -13.6 0.208 -38.0 16.5 -10.97 0.283 -67.4 21.5 11.970 -102.6 -40 0.009 116.4 -12.7 0.231 -65.0 17.0 -11.25 0.274 -109.8 21.4 11.796 -151.3 -39 0.011 77.9 -12.1 0.247 -101.8 17.5 -11.47 0.267 -152.2 21.0 11.331 162.1 -38 0.012 38.0 -12.1 0.246 -140.0 18.0 -12.36 0.241 168.0 20.9 11.208 115.8 -38 0.012 -5.3 -13.1 0.220 179.3 18.5 -13.30 0.217 132.5 20.6 10.720 69.0 -38 0.012 -40.0 -14.2 0.194 139.1 19.0 -13.86 0.203 99.5 20.4 10.474 21.3 -38 0.012 -82.3 -15.4 0.170 94.9 19.5 -13.77 0.205 67.3 20.1 10.158 -25.9 -39 0.011 -118.5 -16.5 0.148 44.7 20.0 -12.94 0.225 32.0 19.8 9.847 -74.5 -38 0.012 -161.5 -16.8 0.144 -5.1 20.5 -11.42 0.268 -6.3 19.4 9.413 -121.1 -39 0.011 162.1 -16.8 0.143 -51.5 21.0 -9.73 0.326 -49.1 18.5 8.500 -169.0 -39 0.011 124.7 -16.5 0.148 -92.9 21.5 -8.00 0.398 -94.4 18.2 8.140 142.8 -40 0.010 79.8 -16.1 0.156 -132.8 22.0 -6.54 0.471 -140.6 17.7 7.703 93.3 -40 0.010 35.1 -16.5 0.149 -167.4 22.5 -5.44 0.534 173.4 16.9 7.055 45.0 -41 0.009 2.9 -17.3 0.136 159.4 23.0 -5.12 0.554 128.5 16.3 6.535 -3.1 -43 0.007 -41.2 -21.9 0.080 138.2 23.5 -4.72 0.581 86.1 15.3 5.881 -54.0 -45 0.005 -84.6 -18.0 0.126 178.1 24.0 -4.17 0.618 44.3 13.7 4.894 -102.8 -47 0.004 -136.3 -11.5 0.265 141.6 24.5 -3.40 0.675 0.9 12.6 4.288 -147.1 -49 0.003 -162.8 -9.0 0.355 100.9 25.0 -2.65 0.737 -44.6 11.6 3.822 168.3 -50 0.003 134.1 -7.7 0.409 61.8 note: data obtained from icm fxture measurements fully de-embedded to package edge. output reference plane for s-p arameters (view from p ackage bottom) input reference plane for s-p arameters
6 figure 20. simplifed mmic schematic. figure 19. typical application. figure 21. demonstration board (available upon request). biasing and operation the ammc-6220 is normally biased with a single positive drain supply connected to both v d pin through bypass capacitors as shown in figure 19. the recommended supply voltage is 3 v. it is important to have 0.1 f bypass capacitor, and the capacitor should be placed as close to the component as possible. the ammc-6220 does not require a negative gate voltage to bias any of the three stages. no ground wires are needed because all ground connections are made with plated through-holes to the backside of the package. refer the absolute maximum ratings table for allowed dc and thermal conditions. v d (typ . 3 v) 0.1 f rfin rfout 8 4 1 2 3 7 6 5 100 pf 100 pf p ackage base gnd rfin rfout v d
7 outline drawing figure 22. outline drawing. 3 2 1 4 8 back view 0.012 (0.30) 0.016 (0.40) 0.014 (0.365) 0.011 (0.28) 0.018 (0.46) 0.114 (2.90) 0.100 (2.54) 0.100 (2.54) 0.059 (1.5) 0.126 (3.2) 0.029 (0.75) 5 6 7 0.016 (0.40) 0.93 (2.36) 0.028 (0.70) notes: 1. * indica tes pin 1 2. dimensions are in inches (millimeters) 3. all grounds must be soldered to pcb rf ground symbol a b dimensions are in inches (mm) min. 0.198 (5.03) 0.0685 (1.74) max. 0.213 (5.4) 0.088 (2.25) dimensional tolerance for back view: 0.002" (0.05 mm) 1 2 3 7 6 5 4 8 b a a ammp xxxx ywwdnn front view side view *
8 recommended smt attachment the ammp packaged devices are compatible with high volume surface mount pcb assembly processes. the pcb material and mounting pattern, as defned in the data sheet, optimizes rf performance and is strongly rec - ommended. an electronic drawing of the land pattern is available upon request from avago sales & application engineering. stencil design guidelines a properly designed solder screen or stencil is required to ensure optimum amount of solder paste is deposited figure 25. combined pcb and stencil layouts figure 23. suggested pcb land pattern and stencil layout figure 24. stencil outline drawing (mm) onto the pcb pads. the recommended stencil layout is shown in figure 24. the stencil has a solder paste deposi - tion opening approximately 70% to 90% of the pcb pad. reducing stencil opening can potentially generate more voids underneath. on the other hand, stencil openings larger than 100% will lead to excessive solder paste smear or bridging across the i/o pads. considering the fact that solder paste thickness will directly afect the quality of the solder joint, a good choice is to use a laser cut stencil composed of 0.127 mm (5 mils) thick stainless steel which is capable of producing the required fne stencil outline. the combined pcb and stencil layout is shown in figure 25.
solder refow profle the most commonly used solder refow method is ac - complished in a belt furnace using convection heat transfer. the suggested refow profle for automated refow processes is shown in figure 26. this profle is designed to ensure reliable fnished joints. however, the profle indicated in figure 26 will vary among diferent solder pastes from diferent manufacturers and is shown here for reference only. figure 26. suggested lead-free refow profle for snagcu solder paste. manual assembly 1. follow esd precautions while handling packages. 2. handling should be along the edges with tweezers. 3. recommended attachment is conductive solder paste. please see recommended solder refow profle. con - ductive epoxy is not recommended. hand soldering is not recommended. 4. apply solder paste using a stencil printer or dot place - ment. the volume of solder paste will be dependent on pcb and component layout and should be controlled to ensure consistent mechanical and electrical perfor - mance. 5. follow solder paste and vendors recommendations when developing a solder refow profle. a standard profle will have a steady ramp up from room tempera - ture to the pre-heat temperature to avoid damage due to thermal shock. 6. packages have been qualifed to withstand a peak temperature of 260c for 20 seconds. verify that the profle will not expose device beyond these limits. AMMP-6220 part number ordering information part number devices per container container AMMP-6220-blk 10 antistatic bag AMMP-6220-tr1 100 7 reel AMMP-6220-tr2 500 7 reel time (seconds ) 300 250 200 150 100 50 0 5 0 100 150 200 250 300 0 tempera ture ( c) peak = 250 5 c mel ting point = 218 c ramp 1 ramp 2 reflo w c ooling prehea t
for product information and a complete list of distributors, please go to our website: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies limited in the united states and other countries. data subject to change. copyright ? 2007 avago technologies limited. all rights reserved. obsoletes 5989-4517en av02-0515en - june 14, 2007 device orientation (top view) carrier tape and pocket dimensions 12 mm 4 mm ammp xxxx amm p xxxx ammp xxxx k o k o b o b o a o section b-b section a-a a o 0.30 0.05 b b a a 1.75 0.10 5.50 0.05 12.00 0.10 r 0.50 typ . ? 1.55 0.05 8.00 0.10 ? 1.50 (min.) 4.00 0.10 see note #2 2.00 0.05 a o : b o : k o : pitch: width: 5.30 5.30 2.20 8.00 12.00 notes: 1. a o and b o measured at 0.3 mm above base of pocket . 2. 10 pitches cumula tive tolerance is 0.2 mm. 3. dimensions are in millimeters (mm). ao bo ko min. 5.20 5.20 2.10 nom. 5.30 5.30 2.20 max. 5.40 5.40 2.30


▲Up To Search▲   

 
Price & Availability of AMMP-6220

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X